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Abstract. This paper presents a georeferenced map extraction method,
for Medium-Altitude Long-Endurance UAVs. The adopted technique of
projecting world points to an image plane is a perfect candidate for a
GPU implementation. The achieved high frame rate leads to a plethora
of measurements even in the case of a low-power mobile processing unit.
These measurements can later be combined in order to refine the output
and create a more accurate result.

1 Introduction

Remote sensing Unmanned Aerial Vehicles (UAVs) are increasingly used in var-
ious civilian domains such as agriculture, environmental monitoring, wildfire
detection and urban geodata tasks. High-accuracy georeferenced mosaics are re-
quired in many remote sensing applications such as coastal erosion monitoring,
post-disaster assessment, micro-topography and urban geoinformation [10]. The
precision and correctness of the models however, are affected by many parame-
ters such as the accuracy of the on-board inertial measurement units, the Global
Positioning Systems (GPS) and the optical image sensors.

Image georeferencing has extensively been investigated in the last decades. A
variety of approaches have been introduced in the literature which address this
issue using the flat world assumption [8, 13]. Such kind of methods are limited
to high flight altitudes or planar terrains. In order to create a georeferenced map
for terrains with rough geomorphology one could distinguish two main trends:
1) algorithms that derive information about the world morphology from Digi-
tal Terrain Models (DTMs) or Digital Surface Models (DSMs) [3, 1, 11] and 2)
techniques that are based on the correlation between the optical information
from consecutively acquired images [12, 6, 10]. In addition to the aforementioned
trends, there is also an increased interest in accelerating the production of geo-
referenced maps using GPGPU computing [11].

Taking advantage of the continuous progress in the precision of the afore-
mentioned sensors, recent sophisticated computer vision algorithms can provide
in real-time, significantly improved accuracies in high resolution spatial data.
This improvement however, comes with a critical trade off, which is the neces-
sity for more computational power on the on-board processing units, especially



when on-board real-time processing is required. Since power consumption and
weight limitations are two of the most fundamental constraints in a UAV design,
an approach of utilizing low-weight and low-power processing boards is highly
essential.

In this paper, a method for real-time on-board georeferenced map extraction
for Medium-Altitude Long-Endurance (MALE) UAVs is proposed, based on the
projection of the world points to the grabbed camera frames. The algorithm
extends well on a GPU, providing the possibility of high processing frequencies.
The achieved frame rates offer multiple measurements which can be used to
increase the accuracy of the final extracted map.

2 Proposed Method

In this section the proposed method, which is based on GPS and Inertial Mea-
surement Unit (IMU) sensors as well as on terrain information, using available
Digital Elevation Models (DEMs), is presented. Through a process of a for-
ward and backward projection between UAV camera sensor images and the
used DEMs, the method produces a colored and georeferenced 3D point cloud.
An orthographic projection of this point cloud to the image plane produces an
orthorectified, georeferenced image. At this point it should be noted that the
z-axis of the camera is always pointing to nadir, so as its image plane is parallel
to the ground.

According to Karakasis et al. [5], a DEM produced by a fusion process be-
tween different DEMs, like SRTM and ASTER, is characterized by more accu-
rate elevations. Since the proposed method depends on the sensors and DEMs
accuracy, a fused version of ASTER and SRTM is selected to be used.

Although basic in principle and sensitive to GPS, IMU and DEMs accuracy,
the proposed algorithm is a perfect candidate for a GPU implementation, since
its mathematical foundation is consistent with that of graphics and thus, a great
acceleration can be achieved. The advantage of speeding up the proposed al-
gorithm is that it increases the measurements density for the 3D point cloud
by allowing a corresponding increase of the camera’s frame rate. This fact lead
us to conclude that we can reduce the overall error of georeference by averag-
ing measurements which correspond to the same world point. Furthermore, it
is worth noticing, that the suitability of the proposed methodology for a GPU
implementation, allows the use of cheaper and less power consuming equipment.

2.1 DEMs Fusion

A four-step fusion process based on the Chebyshev spectral expansion [5], is used
in order to produce a fused version of the freely available ASTER and SRTM
DEMs. The fusion steps are the following: 1) the preprocessing process, which
addresses resolution issues of the used DEMs, 2) the forward transform of the
DEMs using the Chebyshev spectral expansion, which produces a set of spec-
tral expansion coefficients, 3) the weighted average of the expansion coefficients,



which produces a set of fused coefficients and finally, 4) the inverse spectral
transform of the fused coefficients in order to produce the fused DEM.

2.2 Mathematical Foundation and Error Reduction

The provided measurements from the GPS and IMU can be represented us-
ing two vectors, namely a 3-dimensional for the position and a 4-dimensional
quaternion for the orientation:
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On the other hand, every point in the world can be represented with respect
to the global frame of reference as:

wp =
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z

 (3)

and given the position and the orientation of the UAV, one can express a world
point with respect to the UAV frame of reference as:
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)
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Finally, given the transformation between the GPS, IMU and camera (camuav T ), as
well as the camera intrinsics matrix (img

camC), the point uavp(i) can be expressed



as coordinates on the camera frame using homogenous coordinates:
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Using Eqs. (4) and (5), a color measurement for the world points inside (i)th’s
camera frustum can be obtained and assigned to a global image representing

the georeferenced map as IG
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where the matrix Q(i) and vector J (i) are derived from the Eqs. (4) and (5) for
a plane and contain information from uav m

w p(i) and uav m
w q(i) [13].

Fig. 1. Grabbed frames projected to a global georeferenced map through Eq. (6).

Fig. 1 illustrates the aforementioned procedure for an example of two grabbed

frames. Images I
(k)
L and I

(k+1)
L are added to the global map IG through the

projection process encompassing though an error introduced by the IMU and
GPS measurements.

Considering the noise reduction, instead of assigning one absolute color mea-
surement on a world point, the plethora of available measurements is exploited.
Thus, a better estimation for the georeferenced color of each world point can be
obtained by taking the average of all the associated measurements.

The intuition behind that logic was the fact that noises introduced to the
system by the measurement units have zero mean. With that in mind and from
Eq. (1) we can easily prove that:

uav m
w p̄ = uav m

uav t p̄+ uav t
w p̄ = uav t

w p̄ (7)

where the notation (̄ ) above the factors is used to describe their average value
for all the acquired measurements over time.



For the rotation on the other hand, the small angle approximation needs to
be considered. In general, if the rotation angle that a quaternion represents is
small enough (like the case of noise); the quaternion can take the form:
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In that case the rotation matrix that corresponds to the quaternion is:

R (δq) ≈ I3x3 − bδθc (9)

where bδθc is the skew-symmetric matrix of the δθ vector.
Taking into account Eq. (9), the rotation matrix R
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Starting from ĪG (pxG) = ĪL (pxL), we need to associate the color informa-
tion of the global map to its pixel coordinates. At this point, an assumption
regarding the local luminosity distribution of an image needs to be introduced.
We are going to assume that in a small global frame region, where the mea-
surements for the same world point will fall, the image function will behave
accordingly to the bilinear model:
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or in other words that the color remains stable or relates bilinearly, with coeffi-
cients a, b and c, to the pixel coordinates, for a small patch of the image. The
combination of the above with Eq. (6), relates the average of the global pixel
coordinates with the local ones, while the Q̄ and J̄ factors exclude their noise
as it was proven with Eqs. (7) and (11).

To test the aforementioned assumption’s strength, an experiment was con-
ducted where the image presented in Fig. 2(a) was trimmed into many sub-
images. A 20 × 20 neighborhood was extracted for every pixel of the image, as
well as the neighborhood’s best fitted plane accordingly to the luminosities. The
extracted plane together with the corresponding luminosity values is shown in
Fig. 2(b). Fig. 2(c) presents a histogram of the absolute differences between those
planes and the corresponding luminosities, while Fig. 2(d) indicates the mean
absolute difference for the individual coordinates of all tested patches. Since the
error between the true pixel intensities and the assumed plane is sufficiently
small, it is justified to carry on having in mind that Eq. (12) locally holds but it
is expected to create a blurring effect to the produced map. Another approach



(a) (b)
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Fig. 2. (a) Tested image. (b) Extracted plane with corresponding luminosity values for
a 20 × 20 size patch. (c) Histogram of the absolute differences between the plane and
the luminosities for all the pixel of the tested image. (d) Average absolute difference
for the 20 × 20 patch coordinates. Note that the range of the pixel intensities is [0 1].

which doesn’t require this assumption, would be to keep track of the average of
the local pixel coordinates and later combine it with the local pixel luminosities.
That methodology, though better in principle, is computationally more expensive
for a GPU implementation and that is why it was not initially adopted. How-
ever, an extension of the methodology including the aforementioned approach is
in authors’ future plans.

Continuing the derivations, from Eq. (5):
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since the img
uavC matrix is constant. Additionally, from Eq. (4) we obtain:
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Once again, given that the position of the world points is not changing over time,
the term wp̄ can be substituted with wp. Furthermore, from the above equation,
together with (7) and (11):
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Finally, the combination of Eqs. (12), (13) and (15) provides a more accurate
measurement for the georeferenced color of a world point, since the noise factors
are eliminated.

At this point, the importance of a measurement plethora becomes clear. As
the number of available measurements for a world point grows bigger, the average
GPS and IMU input is better approximated and the noise is closer to zero. This
result is verified in Subsection 4.3, where the accuracy improvement with respect
to the growth of measurements for a world point is presented.



3 GPU Implementation

Inspired by modern graphics rendering techniques, we introduce an early step
in the aforementioned algorithm. Instead of projecting all the individual world
points of the area to be scanned on every grabbed frame from the UAV, we nar-
row down the world candidates by using an opposite projection. The technique
of narrowing down the world candidates is well known in computer graphics,
where the lighting is only calculated for the world points that can be seen by the
camera. Therefore, in our case the pixels of each individual image are projected
on a flat world [13], providing an estimation about the world points possibly
inside the field of view of the camera. Only those points are projected again on
the image plane and the ones that fall out of the image dimensions are rejected.

As it is stated before, the whole process of projection is a perfect candidate
and can be efficiently implemented on a GPU. The process of assigning one
new color measurement to every world point inside the camera’s field of view, is
passed on to GPU threads and executed in parallel. The transformation matrices
are stored in the GPU constant memory, allowing all threads to access their
values simultaneously. Furthermore, the DEM data are stored in the texture
memory of the GPU, enabling fast hardware bilinear interpolation in order to
achieve the desired analysis.

The GPU algorithm was implemented using nVidia’s CUDA API [4] following
its Single Instruction on Multiple Threads (SIMT) possibilities and constraints,
while the reader is able to examine the specifics of the implementation online1.

4 Experimental Results

This section aims to evaluate the proposed methodology in terms of both, com-
putation time and accuracy of the resulted orthorectified and georeferenced map.
As has already been mentioned, the GPU implementation of the proposed algo-
rithm significantly accelerates the computation time leading to the conclusion
that a faster camera could be used. High frame rates increase the density of
the produced point cloud allowing a corresponding improvement of the overall
resulting accuracy. Since, the construction of the UAV has not been finished yet,
a simulation environment has been built in order to evaluate the algorithm’s
performance.

4.1 Simulation

The simulated environment is based on the usage of DEMs and satellite images
in order to construct a realistic scene. A dense lidar DEM dataset [7], which
represents the area (Longitude range: 2o24′00.0”W to 2o25′48.0”W and Lati-
tude range: 43o18′00.0”N to 43o19′48.0”N), with resolution 1 meter is used as
ground truth in order to evaluate the resulted orthorectified map of the proposed

1 http://tinyurl.com/CUDA-AerialImgGeoref



algorithm. Furthermore, Gaussian noise is added to the position and orientation
of the simulated UAV in order to further simulate the errors, which are owed to
sensors (GPS & IMU) accuracy. This procedure creates a position error about
±5 meters from the exact position, while such orientation error, so as to have at
most 2o degrees error from the vertical axis (nadir).

4.2 CPU vs GPU - Time Performance Comparison

In order to present timing evaluations and comparisons, a CPU version of the
aforementioned methodology was also implemented. Both algorithms (CPU &
GPU) where executed and timed on a nVidia Jetson TK1 board. This board is
equipped with a Tegra K1 GPU and a quad-core ARM Cortex-A15 CPU. The
low power consumption (∼ 14W at most) and the lightness (∼ 120gr) of this
board (crucial requirements for modern systems [2]) enables the processing to be
done online on the UAV without the need of extra communications, hardware
and flight load.

(a) (b)

Fig. 3. (a) Fps comparison for the CPU and the GPU implementations (note the
logarithmic scale). (b) GPU over CPU achieved speedup.

Fig. 3(a) presents the frames per second achieved for both CPU and GPU
implementations over 5 different image resolutions, viz 512 × 512, 756 × 756,
1024×1024, 1512×1512 and 2048×2048. Real time performance was achieved for
image up to 1512×1512 size. In general, modern cameras provide the possibility
of choosing between several combinations of image resolution and frame rate.
The most efficient choice for a real setup scenario would be the one that lies
closer to a point of the presented graph. Fig. 3(b) on the other hand, depicts
the speedup of the GPU over the CPU implementation. Note that the speedup
remains constant as the resolution grows, proving a consistent scalability of the
implemented algorithm.

4.3 GPU Implementation - Accuracy Evaluation

The number of measurements acquired for a world point depends on the factors
of flight height and speed, the frame rate of the camera and the algorithm, as



well as the image dimensions. We choose to carry out the presented experiments
with a setup where the UAV would fly at 1km height with 150km/h using a
camera with 756× 756 resolution, although our method is scalable for any other
combination.

(a) (b)

Fig. 4. (a) Maximum measured error. (b) Average measured error. Note that the error
scale is [0 255] for visualization purposes.

In order to relate the georeferenced map accuracy with the achieved speed
of the algorithm, a variety of different frame rates were tested. The absolute
difference between the ground truth georeferenced map and the map produced
from the proposed algorithm (with introduced noise), is selected as a measure of
error. As one can see in Fig. 4, the error is inversely proportional to the frame
rate and consistently to the number of measurements for the individual points.

Fig. 5. (a) Georeferenced ground truth map. (b) Georeferenced produced map. (c)
Measurements density of the scanned area.

Finally, the ground truth and the generated georeferenced-orthorectified map
of the scanned area, can qualitatively be compared to each other in Fig. 5(a)
and Fig. 5(b) respectively. Since the number of measurements for the points of
the world is not uniformly distributed, ie the density is smaller at the beginning
and the end of the UAV trajectory, only the region in the middle exhibits the
optimum noise reduction. The measurement density is illustrated in Fig. 5(c),
where the red coloring represents the territory with less measured world points,
while moving towards blue the number of measurements grows bigger. At this
point it should be noticed that although the output has blur appearance, the
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georeference quality in the middle region is increased, since there are no ghost
effects (as in the bottom and upper area) and the color information is better
positioned in the world.

5 Conclusions

In this work, a GPU accelerated method able to generate a georeferenced map
for a scanned area from a UAV, is proposed. Although the method is influenced
by GPS and IMU noise, a high frame rate can be achieved by the algorithm
(even for a mobile GPU), enabling the acquisition of a measurement plethora
which subsequently was proven to create more precise results.
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